MIT18.06 Linear Algebra (21)

lec21

eigen vector

find a function, in goes vector xx , out comes vector AxAx .

$Ax paralleltoparallel to x i.e.i.e. Ax=\lambda x$

If AA is singular, λ=0\lambda =0 is an eigenvalue

projection matrix

for any xx in the plane, Px=xPx=x i.e. λ=1\lambda =1

for any xx perpendicular to the plane, Px=0Px = 0 , i.e. λ=0\lambda = 0

All eigenvalues

$n\times n matrixhasmatrix has n$ eigenvalues.

Sum of these eigenvalues = tr(A)\operatorname{tr}(A) (some if diagonal)

Product of eigenvalues = det(A)\det(A)

Solve Ax=λxAx=\lambda x

(AλI)x=0(A-\lambda I)x=0

 AλI  is singular det(AλI)=0\Leftrightarrow  A-\lambda I \; \text{is singular} \Leftrightarrow  \det(A-\lambda I)=0

E.g.

A=[3113]A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \\ \end{bmatrix}

det(AλI)=3λ113λ=(3λ)21=λ26λ+8(6:trace, 8:det)\det(A-\lambda I)=\begin{vmatrix} 3-\lambda & 1\\ 1 & 3-\lambda \end{vmatrix} =(3-\lambda )^2-1 = \lambda ^2-{\color{Red} 6} \lambda +{\color{Red} 8} \\ (\text{6:trace, 8:det})

Example for rotation matrix

Q=[ 01 10]Q = \begin{bmatrix} 0 & -1\\ 1 & 0\end{bmatrix}

tr(A)=0=λ1+λ2det(A)=1=λ1λ2\mathrm{tr}(A)=0=\lambda_1 + \lambda_2 \\\det(A) = 1 = \lambda_1\lambda_2

λ1=i,λ2=i(conjugated)\lambda_1 = i,\lambda_2=-i \text{(conjugated)}

if AA is symmetric, λ\lambda will have no imaginary parts.

if A=AA=-A^\top , λ\lambda will have pure imaginary parts.

Example for triangular matrix

for

[ 31 03]\begin{bmatrix} 3 & 1\\ 0 & 3\end{bmatrix}

x1=[10]x_1=\begin{bmatrix}1 \\ 0 \end{bmatrix}

no independent x2x_2 .


MIT18.06 Linear Algebra (21)
https://yzzzf.xyz/2022/09/28/MIT16.08-lec21/
Author
Zifan Ying
Posted on
September 28, 2022
Licensed under