MIT18.06 Linear Algebra (10)

lec10

4 Subspaces

  • column space C(A)C(A)
  • null space N(A)N(A)
  • row space C(A)C(A^\top)
  • left null space N(A)N(A^\top)
    • N(A)A=0N(A^\top)^\top A=0

C(A)C(RREF(A))C(A) \neq C(\operatorname{RREF}(A))

How to find N(A)N(A^\top)

[ Am×nIm×m]elimination[ Rm×nEm×m]\begin{bmatrix}\begin{array}{c|c} A_{m\times n} & I_{m\times m}\end{array}\end{bmatrix}\stackrel{\text{elimination}}{\longrightarrow}\begin{bmatrix}\begin{array}{c|c} R_{m\times n} & E_{m\times m}\end{array}\end{bmatrix}

e.g.

[  1231100 1121010 1231001] [  1011120 0110120 0000101]\begin{bmatrix}\begin{array}{cccc|ccc}  1 & 2 & 3 & 1 & 1 & 0 & 0\\ 1 & 1 & 2 & 1 & 0 & 1 & 0\\ 1 & 2 & 3 & 1 & 0 & 0 & 1\end{array}\end{bmatrix}\longrightarrow \begin{bmatrix}\begin{array}{cccc|ccc}  1 & 0 & 1 & 1 & -1 & 2 & 0\\ 0 & 1 & 1 & 0 & 1 & -2 & 0\\ 0 & 0 & 0 & 0 & -1 & 0 & 1\end{array}\end{bmatrix}

EA=[120110101][123111211231]=[101101100000]=RE A=\left[\begin{array}{cccc}-1 & 2 & 0 \\-1 & -1 & 0 \\-1 & 0 & 1\end{array}\right]\left[\begin{array}{llll}1 & 2 & 3 & 1 \\1 & 1 & 2 & 1 \\1 & 2 & 3 & 1\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 1 & 1 \\0 & 1 & 1 & 0 \\0 & 0 & 0 & 0\end{array}\right]=R

[101]A=[0000]=0N(A)=[101]\therefore \begin{bmatrix} -1 & 0 & 1\end{bmatrix}A = \begin{bmatrix} 0 & 0 & 0 & 0\end{bmatrix}=\mathrm{0}^\top \\N(A^\top)=\begin{bmatrix}-1 \\0 \\1\end{bmatrix}

Intro to matrix space

all 3×33\times 3 matrices.

Subspace:

  • diagonal matrices (对角矩阵)
  • upper triangular matrices
  • symmetric matrices

dimension

dimension of all 3×33\times 3 matrices?
9

upd

dimension of all 3×33\times 3 upper-triangular matrices : 6


MIT18.06 Linear Algebra (10)
https://yzzzf.xyz/2022/09/27/MIT16.08-lec10/
Author
Zifan Ying
Posted on
September 27, 2022
Licensed under