MIT18.06 Linear Algebra (23)

lec23

differential equation dudt=Au\frac{\mathrm{d}u}{\mathrm{d}t}=Au

e.g. Solve

du1dt=u1+2u2du2dt=u12u2\begin{array}{l}\frac{d u_{1}}{d t}=-u_{1}+2 u_{2} \\\frac{d u_{2}}{d t}=u_{1}-2 u_{2}\end{array}

dudt=Au\longrightarrow \frac{du}{dt} = Au

where

A=[1212]A=\left[\begin{array}{cc}-1 & 2 \\1 & -2\end{array}\right]

and

u(0)=[u1u2]=[10]u(0)=\begin{bmatrix}u_1 \\ u_2\end{bmatrix}=\begin{bmatrix}1\\0\end{bmatrix}

Find eigenvalues and eigenvectors of AA :

x1=[21],x2=[11]x_1 = \begin{bmatrix}2 \\ 1\end{bmatrix},x_2 = \begin{bmatrix}1 \\ -1\end{bmatrix}

Then the general solution is:

u(t)=c1eλ1tx1+c2eλ2tx2u(t)=c_1e^{\lambda_1t}x_1+c_2e^{\lambda_2t}x_2

= c1eλ1tx1c_1e^{\lambda_1t}x_1 and c2eλ2tx2c_2e^{\lambda_2t}x_2 are both solutions.

e.g. plug u=eλ1tx1u=e^{\lambda_1t}x_1 in dudt=Au\frac{\mathrm{d}u}{\mathrm{d}t}=Au ,

λ1eλ1tx1=Aeλ1tx1λ1x1=Ax1\lambda_1e^{\lambda_1t}x_1=Ae^{\lambda_1t}x_1 \\ \Rightarrow \lambda_1x_1=Ax_1

  1. stability ( u(t)0u(t) \to 0 ) : Reλ<0\mathrm{Re} \lambda < 0
  2. steady state : λ1=0\lambda_1 = 0 and other Reλ<0\mathrm{Re} \lambda < 0
  3. blow up : Reλ<0\forall \mathrm{Re}\lambda<0

for 2×22\times 2 matrices, how to get Reλ1<0,Reλ2<0\mathrm{Re}\lambda_1<0, \mathrm{Re}\lambda_2<0 ?

λ1+λ2=tr(A)<0λ1λ2=det(A)>0\lambda_1+\lambda_2=\mathrm{tr}(A)<0\\ \lambda_1\lambda_2=\det(A)>0

Uncouple dudt=Au\frac{\mathrm{d}u}{\mathrm{d}t}=Au

Set

u=Svu=Sv

dudt=Sdvdt=Au=ASv\frac{\mathrm{d}u}{\mathrm{d}t}=S\frac{\mathrm{d}v}{\mathrm{d}t}=Au=ASv

dvdt=S1ASv=Λv\Rightarrow \frac{\mathrm{d}v}{\mathrm{d}t}=S^{-1} A S v=\Lambda v

i.e.

dv1dt=λ1v1\frac{\mathrm{d}v_1}{\mathrm{d}t}=\lambda_1 v_1\\\vdots

vv’s are uncoupled.

So

u=Sv=SeΛtv(0)=SeΛtS1u(0)=eAtu(0)\therefore u=Sv = Se^{\Lambda t}v(0)=Se^{\Lambda t}S^{-1}u(0) \\= e^{At}u(0)

upd: what eΛte^{\Lambda t} means? e^{\Lambda t}=\begin{bmatrix} e^{\lambda_1 t} & 0 & 0\ 0 & \ddots  & 0\ 0 & 0 & e^{\lambda_n t}\end{bmatrix}

Meaning of exponential of a matrix ( SeΛtS1=eAtSe^{\Lambda t}S^{-1} = e^{At} )

Taylor Series ex=xnn!e^{x}=\sum \frac{x^{n}}{n !} :

eAt=I+At+(At)22+(At)36++(At)nn!+e^{A t}=I+A t+\frac{(A t)^{2}}{2}+\frac{(A t)^{3}}{6}+\cdots+\frac{(A t)^{n}}{n !}+\cdots

also, 11x=0xn\frac{1}{1-x}=\sum_{0}^{\infty} x^{n} : (for λ(At)<1|\lambda(At)|<1 )

(IAt)1=I+At+(At)2+(At)3t+(I-A t)^{-1}=I+A t+(A t)^{2}+(A t)^{3} t+\cdots

Why I+At+(At)22+(At)36++(At)nn!+=SeΛtS1I+A t+\frac{(A t)^{2}}{2}+\frac{(A t)^{3}}{6}+\cdots+\frac{(A t)^{n}}{n !}+\cdots=Se^{\Lambda t}S^{-1} ?

eAt=I+At+(At)22+(At)36++(At)nn!+=SS1+SΛS1t+SΛ2S1t22+=SeΛtS1\begin{aligned} e^{At} & = I+A t+\frac{(A t)^{2}}{2}+\frac{(A t)^{3}}{6}+\cdots+\frac{(A t)^{n}}{n !}+\cdots \\ & = SS^{-1}+S\Lambda S^{-1}t + \frac{S\Lambda^2 S^{-1}t^2}{2}+\cdots \\ & = Se^{\Lambda t}S^{-1} \end{aligned}

Because Λ\Lambda is diagonal, (use Taylor series)

eΛt=[ eλ1t00 0 0 00eλnt]e^{\Lambda t}=\begin{bmatrix} e^{\lambda_1 t} & 0 & 0\\ 0 & \ddots  & 0\\ 0 & 0 & e^{\lambda_n t}\end{bmatrix}

2-order differential equation

Solve

y+by+ky=0y''+by'+ky=0

let

u=[yy]u=[yy]=[bk10][yy] u= \begin{bmatrix}y' \\ y\end{bmatrix}\\ u'= \begin{bmatrix}y'' \\ y'\end{bmatrix}=\begin{bmatrix}-b & -k \\1 & 0\end{bmatrix}\begin{bmatrix}y' \\ y\end{bmatrix}

that is in the form of dudt=Au\frac{\mathrm{d}u}{\mathrm{d}t}=Au


MIT18.06 Linear Algebra (23)
https://yzzzf.xyz/2022/11/14/MIT16.08-lec23/
Author
Zifan Ying
Posted on
November 14, 2022
Licensed under