lec20
2x2 inverse
[acbd]−1=ad−bc1[d−c−ba]
inverse
A−1=detA1C⊤
for cofactor C , see cofactor
proof
check:
AC⊤=(detA)I
a11⋮an1⋯⋯a1n⋮annC11⋮C1n⋯⋯Cn1⋮Cnn=detA000⋱000detA
why get 0?
in A=[acbd]−1,C⊤=[d−c−ba] :
a(−b)+ba
means:
a abb=0
Cramer’s rule
Solve Ax=b
x=A−1b=detA1C⊤b
then
xj=detAdetBj
where
Bj=a11a21⋮an1⋯⋯⋯a1j−1a2j−1⋮anj−1b1b2⋮bna1j+1a2j+1⋮anj+1⋯⋯⋯a1na2n⋮ann
Because:
x1detA=detB1=⋮b⋮A12⋮An2⋯⋯A1n⋮Ann=b1C11+⋯+bnCn1=C⊤b
determinate and volume
find area of △OAB :
21xAxByAyB
find area of △ABC :
21 xA xB xCyAyByC111