MIT18.06 Linear Algebra (20)

lec20

2x2 inverse

[abcd]1=1adbc[dbca]\left[\begin{array}{ll}a & b \\c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\-c & a\end{array}\right]

inverse

A1=1detACA^{-1}=\frac{1}{\det A} C^{\top}

for cofactor CC , see cofactor

proof

check:

AC=(detA)IA C^\top=(\det A) I

[a11a1nan1ann][C11Cn1C1nCnn]=[detA000000detA]\left[\begin{array}{ccc} a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n} \end{array}\right]\left[\begin{array}{ccc} C_{11} & \cdots & C_{n 1} \\ \vdots & & \vdots \\ C_{1 n} & \cdots & C_{nn} \\ \end{array}\right] = \left[\begin{array}{cccc} \det A & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \det A \end{array}\right]

why get 0?

in A=[abcd]1,C=[dbca]A=\left[\begin{array}{ll}a & b \\c & d\end{array}\right]^{-1},C^\top = \left[\begin{array}{cc}d & -b \\-c & a\end{array}\right] :

a(b)+ba a(-b)+ba

means:

 ab ab=0\begin{vmatrix} a & b\\ a & b\end{vmatrix} = 0

Cramer’s rule

Solve Ax=bAx=b

x=A1b=1detACbx=A^{-1}b=\frac{1}{\det A}C^\top b

then

xj=detBjdetAx_j=\frac{\det B_j}{\det A}

where

Bj=[a11a1j1b1a1j+1a1na21a2j1b2a2j+1a2nan1anj1bnanj+1ann]B_j = \left[\begin{array}{cccccc} a_{11} & \cdots & a_{1\,j-1} & b_{1} & a_{1 \,j+1} & \cdots & a_{1 n} \\ a_{21} & \cdots & a_{2\,j-1} & b_{2} & a_{2 \, j+1} & \cdots & a_{2 n} \\ \vdots & & \vdots & \vdots & \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n\,j-1} & b_{n} & a_{n\,j+1} & \cdots & a_{n n} \end{array}\right]

Because:

x1detA=detB1=A12A1nbAn2Ann=b1C11++bnCn1=Cbx_1 \det A= \det B_1=\begin{vmatrix} \vdots & A_{12} & \cdots & A_{1n}\\ b & \vdots & & \vdots \\ \vdots & A_{n2} & \cdots & A_{nn} \end{vmatrix} = b_1C_{11} + \cdots + b_nC_{n1} = C^\top b

determinate and volume

find area of OAB\triangle OAB :

12xAyAxByB\frac{1}{2} \begin{vmatrix} x_A & y_A \\ x_B & y_B\end{vmatrix}

find area of ABC\triangle ABC :

12  xAyA1 xByB1 xCyC1\frac{1}{2} \begin{vmatrix} x_A & y_A & 1\\ x_B & y_B & 1\\ x_C & y_C & 1\end{vmatrix}


MIT18.06 Linear Algebra (20)
https://yzzzf.xyz/2022/09/27/MIT16.08-lec20/
Author
Zifan Ying
Posted on
September 27, 2022
Licensed under