MIT18.06 Linear Algebra (19)

lec19

2x2 det\det

abcd=a0cd+0bcd=a0c0+a00d+0bc0+0b0d=adbc\left|\begin{array}{ll}a & b \\c & d\end{array}\right|=\left|\begin{array}{ll}a & 0 \\c & d\end{array}\right|+\left|\begin{array}{ll}0 & b \\c & d\end{array}\right|=\left|\begin{array}{ll}a & 0 \\c & 0\end{array}\right|+\left|\begin{array}{ll}a & 0 \\0 & d\end{array}\right|+\left|\begin{array}{cc}0 & b \\c & 0\end{array}\right|+\left|\begin{array}{ll}0 & b \\0 & d\end{array}\right| = ad-bc

3x3 det\det

what the survivors for

 a11a12a13 a21a22a23 a31a32a33\begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\end{vmatrix}

?

a11000a22000a33+a110000a230a320+\begin{vmatrix} a_{11} & 0 & 0\\ 0 & a_{22} & 0\\ 0 & 0 & a_{33}\end{vmatrix}+\begin{vmatrix} a_{11} & 0 & 0\\ 0 & 0 & a_{23}\\ 0 & a_{32} & 0\end{vmatrix}+ \cdots

=a11a22a33a11a23a32=a_{11} a_{22} a_{33} - a_{11} a_{23} a_{32} \cdots

Big formula

detA=n! terms±a1αa2βa3γanω\operatorname{det} A=\sum_{n! \text { terms}} \pm a_{1\alpha} a_{2 \beta} a_{3\gamma} \cdots a_{n \omega}

where (α,β,γ,,ω)= perm. of (1,2,,n)(\alpha, \beta, \gamma,\ldots, \omega)=\text { perm. of }(1,2, \ldots, n)

cofactor

子式和余子式 - 维基百科,自由的百科全书


MIT18.06 Linear Algebra (19)
https://yzzzf.xyz/2022/09/27/MIT16.08-lec19/
Author
Zifan Ying
Posted on
September 27, 2022
Licensed under