lec17
Orthonormal vectors
qi⊤qj={01 if i=j if i=j
⁍
So Q⊤=Q−1
We call Q orthonormal matrix when it’s square.
Hadamard matrix
Let H be the n order Hadamard matrix, then
⁍
is 2n order Hadamard matrix.
e.g.
H1H2H4⋮=[1]=[111−1]=11111−11−111−1−11−1−11
21H4 is an orthonormal matrix.
Gram-Schmidt
From any two vectors a,b , get two orthogonal vectors A,B , and then get two orthonormal vectors q1,q2 .
Gram
A=a
B=b−A⊤AA⊤bA
i.e. B is the error vector e in lec15, which is perpendicular to A , i.e. A⊤B=0
C=c−A⊤AA⊤CA−B⊤BB⊤CB
c is a known vector.
Schmidt
q1:=∥A∥Aq2:=∥B∥Bq3:=∥C∥C
A=QR
A:= ⋮a ⋮⋮b⋮
Q:= ⋮q1 ⋮⋮q2⋮
then
⁍
where R is an upper triangular matrix.
Because:
[a b]=[q1 q2][a⊤q1a⊤q2b⊤q1b⊤q2]