MIT18.06 Linear Algebra (14)

lec14

orthogonal vectors(正交)

xy=0x^\top y=0

x2+y2=x+y2\| x\| ^2+\| y\| ^2=\| x+y\| ^2

Subspace

Subspace S is orthogonal to subspace T

means: every vector in S is orthogonal to every vector in T.

row space is orthogonal to null space.

null space and row space are orthogonal complement in Rn\mathbb{R}^n

that means: null space contains all vectors \bot row space.

solve AAx^=ABA^\top A \hat{x}=A^\top B

from Ax=BAx=B to AAx^=ABA^\top A \hat{x} = A^\top B , to find “best” solution x^\hat{x} .

  1. N(AA)=N(A)N(A^\top A)=N(A)
  2. rank(AA)=rank(A)rank(A^\top A)= rank(A)
  3. AAA^\top A is invertible iff A has independent columns. (upd@0429: equivalent to 1. and 2. )

proof of N(AA)=N(A)N(A^\top A)=N(A)

Prove rankATA=rankA\operatorname{rank}A^TA=\operatorname{rank}A for any AMm×nA\in M_{m \times n}


MIT18.06 Linear Algebra (14)
https://yzzzf.xyz/2022/09/27/MIT16.08-lec14/
Author
Zifan Ying
Posted on
September 27, 2022
Licensed under