MIT18.06 Linear Algebra (8)

lec8

Solve Ax=bAx=b

[122224683680][x1x2x3x4]=[b1b2b3](Ax=B)\left[\begin{array}{llll}1 & 2 & 2 & 2 \\2 & 4 & 6 & 8 \\3 & 6 & 8 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2} \\x_{3} \\x_{4}\end{array}\right]=\left[\begin{array}{l}b_{1} \\b_{2} \\b_{3}\end{array}\right](Ax=B)

4 variables, 3 equations.

[1222b12468b236810b3][1222b10024b22b10000b3b2b1]\left[\begin{array}{llll|l}1 & 2 & 2 & 2 & b_{1} \\2 & 4 & 6 & 8 & b_{2} \\3 & 6 & 8 & 10 & b_{3}\end{array}\right] \rightarrow\left[\begin{array}{llll|l}1 & 2 & 2 & 2 & b_{1} \\0 & 0 & 2 & 4 & b_{2}-2 b_{1} \\0 & 0 & 0 & 0 & b_{3}-b_{2}-b_{1}\end{array}\right]

b3b2b1=0\Rightarrow b_3-b_2-b_1=0

solvability

$Ax=b issolvablewhenis solvable when b isinis in C(A)$ .

steps

  1. Find particular xpx_p so that Axp=bAx_p=b
    • set all free variables = 0
    • find xpx_p
  2. Find so Axn=bAx_n=b
  3. A(xp+xn)=bA(x_p+x_n)=b

e.g.

[1222246836810][x1x2x3x4]=[156]\left[\begin{array}{llll}1 & 2 & 2 & 2 \\2 & 4 & 6 & 8 \\3 & 6 & 8 & 10\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2} \\x_{3} \\x_{4}\end{array}\right]=\left[\begin{array}{l}1 \\5 \\6\end{array}\right]

[122210024300000]pivots\left[\begin{array}{cccc|c}{\color{Red} 1} & 2 & 2 & 2 & 1 \\0 & 0 & {\color{Red}2} & 4 & 3 \\0 & 0 & 0 & 0 & 0\end{array}\right]\\ {\color{Red} \text{pivots}}

row [00000]\left[\begin{array}{llll|l}0 & 0 & 0 & 0 & 0\end{array}\right] tell that it is solvable.

  • free variables: x2,x4x_2,x_4 ,
  • set x2=x4=0x_2=x_4=0
  • {1x1+2x2+2x3+2x4=12x3+4x4=3xp=[203/20]\left\{ \begin{aligned} 1x_1+2x_2+2x_3+2x_4&=1\\ 2x_3+4x_4&=3 \end{aligned}\right. \Rightarrow x_p=\left[\begin{array}{c} -2 \\ 0 \\ 3 / 2 \\ 0 \end{array}\right]
  • set free variables = [ 10]\begin{bmatrix} 1\\0\end{bmatrix} and [ 10]\begin{bmatrix} 1\\0\end{bmatrix} , get xn=[2100] and [2021]x_{n}=\left[\begin{array}{c}-2 \\1 \\0 \\0\end{array}\right] \text { and }\left[\begin{array}{r}2 \\0 \\-2 \\1\end{array}\right]
  • Xcomplete =[203/20]+C1[2100]+C2[2021]X_{\text {complete }}=\left[\begin{array}{c}-2 \\0 \\3 / 2 \\0\end{array}\right]+C_{1}\left[\begin{array}{c}-2 \\1 \\0 \\0\end{array}\right]+C_{2}\left[\begin{array}{c}2 \\0 \\-2 \\1\end{array}\right]

MIT18.06 Linear Algebra (8)
https://yzzzf.xyz/2022/09/26/MIT16.08-lec8/
Author
Zifan Ying
Posted on
September 26, 2022
Licensed under