lec7
null space
the x such that Ax=0000always gives a vector space.
Proof.
⁍
where C is a constant.
rank
rank of A = #pivots = #linear independent vectors.
e.g.
A=→→1232462682810100200222244100200220240#pivots=2
A=100200220240pivot columnsfree columns
100200220240x1x2x3x4=0⇒{x1+2x2+2x3+2x4=02x3+4x4=0
x2,x4 can be any number (free column)
Let [x2x4]=[10] ,
x=x11x30→−2100
(special solution 1)
Let [x2x4]=[11]
x=x10x31→20−20
(special solution 2)
x=c−2100+d20−20
is the null space
RREF (reduced row echelon form)
→→100200220240(U:upper)100200020240100200010−220(R:reduced row echelon form)
100200010−220⟶ col exchange 100010200−220([IZ(zeros)F(free vaible)Z(zeros)])
Special solution
[ IF][ −FI]=0
[−FI]is a special solution.
e.g.
I=[1001],F=[11]
then x=−1−11 is the special solution.
null space = c−1−11 ( dimN(A)=#cols of A−r=1 )