MIT18.06 Linear Algebra (7)

lec7

null space

the xx such that Ax=[0000]Ax = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}always gives a vector space.

Proof.

where CC is a constant.

rank

rank of AA = #pivots = #linear independent vectors.

e.g.

A=[1222246836810][122200240024][122200240000]#pivots=2\begin{aligned}A=&\begin{bmatrix} \color{red}{1} & 2 & 2 & 2\\ 2 & 4 & 6 & 8\\ 3 & 6 & 8 & 10\end{bmatrix} \\\to &\begin{bmatrix} \color{red}{1} & 2 & 2 & 2\\ 0 & 0 & \color{red}{2} & 4\\ 0 & 0 & 2 & 4\end{bmatrix} \\\to &\begin{bmatrix} \color{red}{1} & 2 & 2 & 2\\ 0 & 0 & \color{red}{2} & 4\\ 0 & 0 & 0 & 0\end{bmatrix} \\&\color{red}{\text{\#pivots=2}}\end{aligned}

A=[122200240000]pivot columnsfree columns\begin{aligned}A=&\begin{bmatrix} \color{red}{1} & 2 & \color{red}{2} & 2\\ \color{red}{0} & 0 & \color{red}{2} & 4\\ \color{red}{0} & 0 & \color{red}{0} & 0\end{bmatrix} \\&\color{red}{\text{pivot columns} } \\&\text{free columns}\end{aligned}

[122200240000][x1x2x3x4]=0{x1+2x2+2x3+2x4=02x3+4x4=0\left[\begin{array}{llll}1 & 2 & 2 & 2 \\0 & 0 & 2 & 4 \\0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2} \\x_{3} \\x_{4}\end{array}\right]=0\\\Rightarrow\left\{\begin{array}{r} x_{1}+2 {\color{Red} x_{2}} +2 x_{3}+2{\color{Red} x_{4}} =0\\ 2 x_{3}+4 {\color{Red} x_{4}} =0 \end{array}\right.

x2,x4x_2, x_4 can be any number (free column)

Let [x2x4]=[10]\left[\begin{array}{l}x_{2} \\x_{4}\end{array}\right]=\left[\begin{array}{l}1 \\0\end{array}\right] ,

x=[x11x30][2100]x=\left[\begin{array}{c}x_{1} \\1 \\x_{3} \\0\end{array}\right] \rightarrow\left[\begin{array}{c}-2 \\1 \\0 \\0\end{array}\right]

(special solution 1)

Let [x2x4]=[11]\left[\begin{array}{l}x_{2} \\x_{4}\end{array}\right]=\left[\begin{array}{l}1 \\1\end{array}\right]

x=[x10x31][2020]x=\left[\begin{array}{c}x_{1} \\0 \\x_{3} \\1\end{array}\right] \rightarrow\left[\begin{array}{c}2 \\0 \\-2 \\0\end{array}\right]

(special solution 2)

x=c[2100]+d[2020]x=c\left[\begin{array}{c}-2 \\1 \\0 \\0\end{array}\right]+d\left[\begin{array}{c}2 \\0 \\-2 \\0\end{array}\right]

is the null space

RREF (reduced row echelon form)

[122200240000](U:upper)[120200240000][120200120000](R:reduced row echelon form)\begin{aligned}&\left[\begin{array}{llll}1 & 2 & 2 & 2 \\0 & 0 & 2 & 4 \\0 & 0 & 0 & 0\end{array}\right] \text{(U:upper)}\\\to & \left[\begin{array}{llll}1 & 2 & 0 & 2 \\0 & 0 & 2 & 4 \\0 & 0 & 0 & 0\end{array}\right] \\\to &\left[\begin{array}{cccc}1 & 2 & 0 & -2 \\0 & 0 & 1 & 2 \\0 & 0 & 0 & 0\end{array}\right] \text{(R:reduced row echelon form)}\end{aligned}

[120200120000] col exchange [102201020000]([IF(free vaible)Z(zeros)Z(zeros)])\left[\begin{array}{cccc}1 & 2 & 0 & -2 \\0 & 0 & 1 & 2 \\0 & 0 & 0 & 0\end{array}\right] \stackrel{\text { col exchange }}{\longrightarrow}\left[\begin{array}{cc|cc}1 & 0 & 2 & -2 \\0 & 1 & 0 & 2 \\\hline 0 & 0 & 0 & 0\end{array}\right] \left( \begin{bmatrix} \begin{array}{c|c} I & F\text{(free vaible)} \\ \hline Z\text{(zeros)} & Z\text{(zeros)} \end{array} \end{bmatrix}\right )

Special solution

[ IF][ FI]=0\begin{bmatrix} I & F\end{bmatrix}\begin{bmatrix} -F\\I\end{bmatrix}=0

[FI]\begin{bmatrix} -F\\I\end{bmatrix}is a special solution.

e.g.

I=[1001],F=[11]I=\begin{bmatrix} 1 & 0\\ 0 & 1\end{bmatrix},F=\begin{bmatrix}1 \\ 1\end{bmatrix}

then x=[111]x=\begin{bmatrix}-1 \\-1 \\1\end{bmatrix} is the special solution.

null space = c[111]c\begin{bmatrix}-1 \\-1 \\1\end{bmatrix} ( dimN(A)=#cols of Ar=1\dim N(A) = \text{\#cols of A} - r=1 )


MIT18.06 Linear Algebra (7)
https://yzzzf.xyz/2022/09/26/MIT16.08-lec7/
Author
Zifan Ying
Posted on
September 26, 2022
Licensed under