MIT18.06 Linear Algebra (5)

lec5

A=LUA=LU

$\forall invertibleinvertible A ,, \exists PA=LU$

transpose

(A)ij=Aji\left(A^{\top}\right)_{i j}=A j i

Symmetrix Matrix

A=AA^{\top}=A

RRR^{\top}R is always symmetric.

proof. (RR)=RR\left(R^{\top} R\right)^{\top}=R^{\top} R

Vector Space

e.g.

R2\mathbb{R} ^2 is all 2-d real vectors.

Vector space is closed to addition and multiplication.

Subspace

Subspace of R2\mathbb{R}^2 :

  • R2\mathbb{R}^2
  • any line through [ 00]\begin{bmatrix} 0\\0\end{bmatrix}
  • only 00 vector

Subspace of matrices

All the combinations of the column vectors of AA is called column space C(A)C(A) .


MIT18.06 Linear Algebra (5)
https://yzzzf.xyz/2022/09/14/MIT16.08-lec5/
Author
Zifan Ying
Posted on
September 14, 2022
Licensed under