lec26
Eigenvector of symmetric matrices
AuAv=λu=ωv
ωv⊤=v⊤A⊤=v⊤Aωv⊤u=v⊤Au=λv⊤u(ω−λ)v⊤u=0v⊤u=0
We can choose orthonormal eigenvectors. Therefor, for S=S⊤ :
S=QΛQ−1=QΛQ⊤
S⊤=QΛ⊤Q⊤=QΛQ⊤=S
Why real eigenvalues?
Ax=λx⟹Axˉ=λˉxˉ⟹xˉ⊤A⊤=xˉ⊤λˉ
Ax=λx⟹xˉ⊤Ax=λxˉ⊤xxˉ⊤A⊤=xˉ⊤λˉ⟹xˉ⊤Ax=λˉxˉ⊤x
⁍
λ is real.
break down A=QΛQ⊤
A=⋮q1⋮⋮q1⋮⋯λ1λ2⋱⋯⋯q1⊤q2⊤⋮⋯⋯=λ1q1q1⊤+λ2q2q2⊤+⋯
$q isaunitvector,so q^\top q=1, qq^\top=\frac{qq^\top}{q^\top q}$, which is projection matrix.
every symmetricmatrix is a combination of mutually perpendicular projedtion matrices. (spectral theorem)
for symmetric matrices, the sign of pivots is the same as the sign of eigenvalues.
Intro to Positive definite symmetric matrix
- all eigenvalues are positive
- all pivots are positive
all subdeterminate are positive.