lec4
基础性质
1
⁍
proof.
(AB)(B−1A−1)=A(BB−1)A−1=AA−1=I
3
(AB)⊤=B⊤A⊤
2
(A⊤)−1=(A−1)⊤
proof.
AA−1(AA−1)⊤(A−1)⊤A⊤=I=I⊤=I⊤=I
A=LU 分解
A=LU without row exchange.
A= 1xx01x001L(lower) x00xx0xxxU(upper)
when #pivot = 0, need row exchange.
or:
A=1xx01x001x000x000x100x10xx1
for n×n matrix, ∃n! P’s.
置换矩阵(Permutation matrix)
when n = 3, 6 permutation matrices:
100010001010100001001010100100001010001100010010001100
P−1=PT
e.g.
0 10 0 00101A 0 0 11 00010A= 1 00 0 10001C
proof.
∵Aij=1⇒ row i of C= row j of B∴ row j of B= col j of A∴Cii=Aij=1C=I