MIT18.06 Linear Algebra (4)

lec4

基础性质

1

proof.

(AB)(B1A1)=A(BB1)A1=AA1=I(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A A^{-1}=I

3

(AB)=BA(A B)^{\top}=B^{\top} A^{\top}

2

(A)1=(A1)\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}

proof.

AA1=I(AA1)=I(A1)A=I=I\begin{aligned}A A^{-1} &=I \\\left(A A^{-1}\right)^{\top} &=I^{\top} \\\left(A^{-1}\right)^{\top} A^{\top} &=I^{\top}=I\end{aligned}

A=LUA=LU 分解

A=LUA=LU without row exchange.

A=  [  100x10xx1][  xxx0xx00x]L(lower)U(upper) A=\begin{array}{c}   \begin{bmatrix}   1 & 0 & 0 \\x & 1 & 0 \\x & x & 1\end{bmatrix} &\begin{bmatrix}   x & x & x \\0 & x & x \\0 & 0 & x\end{bmatrix} \\\text{L(lower)} & \text{U(upper)} \end{array}

when #pivot = 0, need row exchange.

or:

A=[100x10xx1][x000x000x][1xx01x001]A=\left[\begin{array}{lll} 1 & 0 & 0 \\ x & 1 & 0 \\ x & x & 1 \end{array}\right]\left[\begin{array}{lll} x & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x \end{array}\right]\left[\begin{array}{lll} 1 & x & x \\ 0 & 1 & x \\ 0 & 0 & 1 \end{array}\right]

for n×nn \times n matrix, n!\exists n! P’s.

置换矩阵(Permutation matrix)

when n = 3, 6 permutation matrices:

[100010001][010100001][001010100][100001010][010001100][001100010]\begin{array}{l}{\left[\begin{array}{lll}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\1 & 0 & 0 \\0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1 \\0 & 1 & 0 \\1 & 0 & 0\end{array}\right]} \\{\left[\begin{array}{lll}1 & 0 & 0 \\0 & 0 & 1 \\0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\0 & 0 & 1 \\1 & 0 & 0\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1 \\1 & 0 & 0\\0 & 1 & 0\end{array}\right]}\end{array}

P1=PTP^{-1}=P^{T}

e.g.

  [ 00 1 1000 01]A  [ 01 0 001 100]A=  [ 10 0 0100 01]C\begin{array}{c}   \begin{bmatrix} 0 &0  &1 \\  1& 0 &0 \\0  & 0 &1\end{bmatrix} \\ A\end{array} \begin{array}{c}   \begin{bmatrix} 0 &1  &0 \\  0& 0 &1 \\ 1& 0 &0\end{bmatrix} \\ A\end{array}=\begin{array}{c}   \begin{bmatrix} 1 &0  &0 \\  0& 1 &0 \\0  & 0 &1\end{bmatrix} \\ C\end{array}

proof.

Aij=1 row i of C= row j of B row j of B= col j of ACii=Aij=1C=I\begin{array}{l}\because A_{i j}=1 \Rightarrow \text { row i of } C=\text { row j of } B \\\therefore \text { row j of } B=\text { col j of } A \\\therefore C_{i i}=A_{i j}=1 \\C=I\end{array}


MIT18.06 Linear Algebra (4)
https://yzzzf.xyz/2022/05/06/MIT16.08-lec4/
Author
Zifan Ying
Posted on
May 6, 2022
Licensed under