一道极限题

$ limh0(x+h)h1h=1\lim\limits_{h \to 0}\frac{(x+h)^h-1}{h} =1 $

引理

$ limx0ex1x=1\lim\limits_{x \to 0}\frac{e^x-1}{x}=1 $

$ proof.  limx0ex1x=limx0xln(x+1)proof. \; \lim\limits_{x \to 0}\frac{e^x-1}{x}=\lim\limits_{x\to 0}\frac{x}{\ln(x+1)} $

where  limx0ln(x+1)x=limx0ln(x+1)1x=ln(limx0(x+1)1x)=lne=1\begin{align} where \; \lim\limits_{x \to 0}\frac{\ln(x+1)}{x} &= \lim\limits_{x \to 0}\ln(x+1)^{\frac{1}{x}}\\ &= \ln\left (\lim\limits_{x \to 0}(x+1)^{\frac{1}{x}}\right) \\ &= \ln e \\ &= 1 \end{align}

证明

limh0(x+h)h1h=limh0ehln(x+h)1h=limh0ehln(x+h)1hln(x+h)limh0ln(x+h)=limx0ex1xlnx=lnx\begin{align} \lim\limits_{h \to 0}\frac{(x+h)^h-1}{h} &= \lim\limits_{h\to 0}\frac{e^{h\ln(x+h)}-1}{h} \\ &=\lim \limits _{h \to 0}\frac{e^{h \ln(x+h)}-1}{h\ln(x+h)} \lim\limits_{h \to 0}\ln(x+h) \\ &=\lim\limits_{x\to 0}\frac{e^x-1}{x} \ln x \\ &=\ln x \end{align}

其他

若求 limh0xh1h\lim\limits_{h \to 0}\frac{x^h-1}{h} ,则直接使用导数定义求,答案相同。


一道极限题
https://yzzzf.xyz/2021/10/31/一道极限题/
Author
Zifan Ying
Posted on
October 31, 2021
Licensed under